Literatur

O. Akça et al., Hypercapnia improves tissue oxygenation. Anaesthesiology 2002, 97(4), 801-6

O. Balik et al., Does Carbon dioxide therapy really diminish localized adiposities? Experimental study with rats. Aesthetic Plast Surg 2011, 35(4), 470-4

C. Brandi et al., Carbon dioxide therapy in the treatment of localized adiposities. Aesthetic Plast Surg 2001, 25(3), 170-4

C. Brandi et al., Carbon dioxide therapy: effects on skin irregularity and its use as a complement to liposuction. Aesthetic Plast Surg 2004, 28(4), 222-5

C. Brandi et al., The role of Carbon dioxide therapy in the treatment of chronic wounds. In Vivo 2010, 24(2), 223-6

C. Brandi et al., Carbon dioxide may be not the only one but an efficient and secure gas for treating local adiposities. Aesthetic Plast Surg 2012, 36(1), 218-9

M. Campana, CO2 therapy to treat adiposities and skin irregularities. Prime-journal 2013


JC. Ferreira et al., Increase in collagen turnover induced by intradermal injection of Carbon dioxide in rats. J Drugs Dermatol 2008, 7(3), 201-6

BR. Hartmann et al., Effect of Carbondioxide enriched water and fresh water on the cutaneous microcirculation and oxygen tension in the skin of the foot. Angiology 1997, 48, 337


T. Murohara et al., Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacycline. Circulation 1998, 97(1),

R. Nach et al., Subcutaneous Carboxytherapy injection for aesthetic improvement of scars. Ear Nose Throat J 2010, 89(2), 64-6
Y. Sakai et al., A novel system for transcutaneous application of Carbon dioxide causing an artificial Bohr effect in the human body. PLoS ONE 2009, 6(9), e24137

V. Valaro et al., Carboxytherapy: effects on microcirculation and its use in the treatment of severe lymphedema. Acta Phleb 2007, 8(2), 79-91

U. Wollina et al., Transdermal CO2 application in chronic wounds. Int J Low Extrem Wounds 2004, 3(2), 103-6